
Positon and negaton solutions of the mKdV equation with self-consistent sources

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 10505

(http://iopscience.iop.org/1751-8121/40/34/008)

Download details:

IP Address: 171.66.16.144

The article was downloaded on 03/06/2010 at 06:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/34
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 10505–10517 doi:10.1088/1751-8113/40/34/008

Positon and negaton solutions of the mKdV equation
with self-consistent sources

Hongxia Wu1,2, Yunbo Zeng3 and Tianyou Fan2

1 Department of Mathematics, School of Science, Jimei University, Xiamen 361021,
People’s Republic of China
2 Department of Mathematics, School of Science, Beijing Institute of Technology,
Beijing 100081, People’s Republic of China
3 Department of Mathematical Sciences, Tsinghua University, Beijing 100084,
People’s Republic of China

E-mail: wuhongxia796@163.com

Received 11 March 2007, in final form 6 July 2007
Published 7 August 2007
Online at stacks.iop.org/JPhysA/40/10505

Abstract
By using the generalized binary Darboux transformation with arbitrary
functions at time t for the negative modified KdV equation with self-consistent
sources (mKdV−ESCSs) which offers a non-auto-Bäcklund transformation
between two mKdV−ESCSs with different degrees of sources, some new
solutions for the mKdV−ESCSs such as singular multisoliton, multipositon,
multinegaton, multisoliton–positon, multisoliton–negaton and multipositon–
negaton solutions are found by taking the special initial solution for auxiliary
linear problems and the special functions of t-time. At the same time, the
properties of these solutions are analyzed in detail.

PACS numbers: 02.30.Ik, 05.45.Yv

1. Introduction

It is well known that the soliton equations with self-consistent sources (SESCSs) have
important physical applications. For example, the KdV equation with self-consistent
sources describes the interaction of long–short capillary-gravity waves [1] and the nonlinear
Schrödinger equation with self-consistent sources describes the soliton propagation in a
medium with both resonant and nonresonant nonlinearities [2, 3] as well as the nonlinear
interaction of high-frequency electrostatic waves with ion acoustic waves in plasma [4].
Therefore SESCSs have attracted some attention [5–13]. In recent years, SESCSs were studied
in the framework of the high-order constrained flows of soliton equations [14–16], namely the
high-order constrained flows of soliton equations are considered as the stationary equations
of the SESCSs. These SESCSs can be solved by the inverse scattering method [4–6, 12],
Darboux transformation [17–22] and Hirota method and Wronskian technique [23–27].
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The Darboux transformation (DT) is a powerful tool for solving soliton equations [28].
However, for soliton equations with sources the normal DT cannot be used to construct
the nontrivial solution from the trivial solution seed. Zeng and others [17–19] proposed a
generalized binary Darboux transformation with an arbitrary function at time t for SESCSs,
which offers a non-auto-Bäcklund transformation between two SESCSs with different degrees
of sources. This kind of DT enables us to obtain soliton, negaton and positon solutions for
SESCSs.

The study of negaton and positon solutions has been made for the KdV equation [29]. It
was pointed out that negaton was a singular reduced two-soliton while the positon solution
was a long-range, slowly decreasing and oscillating singular soliton-like solution. It was also
shown that positon was absolutely transparent for soliton and negaton, i.e., soliton and negaton
gain no phase shifts when colliding with positon, and that two positons were totally insensitive
to the mutual collision, even without additional phase shifts. Some positons and negatons
are obtained for many soliton equations by using the Darboux transformation [18, 20, 21, 29,
31–34]. By Hirota’s bilinear method, rational solutions, solitons, negatons and positons are
recovered for the KdV equation [30], the KdV equation with sources [35], the Schrödinger
source equation [36], etc from their Wronskian and so-called generalized Wronskian solutions.
Moreover, a more general class of exact solutions to the KdV equation, called complexiton
solutions, is furnished by the Wronskian or Casorati formulation for the KdV equation
[37, 38] and Toda lattice [39]. However, up to now, positon and negaton solutions for
the mKdV equation with self-consistent source (mKdVESCSs) have not been investigated
though its N -soliton solution has been obtained by the integral-type Darboux transformations
[22] and Hirota method and Wronskian technique [24].

In this paper, by reducing the generalized binary Darboux transformation with an arbitrary
function at time t for the AKNS equation with self-consistent sources (AKNSESCSs) presented
in [20], we obtain the generalized binary Darboux transformation with arbitrary functions at
time t for the negative modified KdV equation with self-consistent sources (mKdV−ESCSs)
which offers a non-auto-Bäcklund transformation between two mKdV−ESCSs with different
degrees of sources. Some new solutions for the mKdV−ESCSs such as singular multisoliton,
multipositon, multinegaton, multisoliton–positon, multisoliton–negaton and multipositon–
negaton solutions are constructed by taking the special initial solution for auxiliary linear
problems and the special functions of time t , which greatly enriches the solution structure of
the mKdVESCSs. In addition, the properties of these solutions are analyzed in detail.

2. Generalized binary Darboux transformation for the AKNSESCSs

First, we briefly review the multi-times repeated generalized binary Darboux transformation
with an arbitrary function of t for the AKNS equation with self-consistent sources.

The third equation in AKNS hierarchy with self-consistent sources (ANKSESCSs) is
defined as [12, 13]

qt = 6qqxr − qxxx +
n∑

j=1

(
ϕ

(1)
j

)2
, (2.1a)

rt = 6qrrx − rxxx +
n∑

j=1

(
ϕ

(2)
j

)2
(2.1b)

ϕj,x = U(λj , q, r)ϕj , j = 1, . . . , n, (2.1c)
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where

U(λ, q, r) =
(

−λ q

r λ

)
λj , j = 1, . . . , n, are n distinct complex constants, ϕj = (

ϕ
(1)
j , ϕ

(2)
j

)T
.

The corresponding Lax pair for equations (2.1) is given by [12, 13]

ψx = U(λ, q, r)ψ, (2.2a)

ψt = R(n)(λ, q, r)ψ, R(n)(λ, q, r) = V (λ, q, r) +
n∑

j=1

H(ϕj )

λ − λj

, (2.2b)

where

V (λ, q, r) =
(

4λ3 − 2λqr − qrx + rqx −4λ2q + 2λqx − qxx + 2q2r

−4λ2r − 2λrx − rxx + 2r2q −4λ3 + 2λqr + qrx − rqx

)
(2.2c)

H(ϕj ) = 1

2

−ϕ
(1)
j ϕ

(2)
j

(
ϕ

(1)
j

)2

−(
ϕ

(2)
j

)2
ϕ

(1)
j ϕ

(2)
j

 . (2.2d)

In order to obtain the N-times repeated Darboux transformation with an arbitrary function of
t , some symmetric forms are defined.

Let cj be a series of scalar and fj = (f
(1)
j

f
(2)
j

)
are the solutions of (2.2) with λ = λj ,

j = 1, . . . , N , u be a scalar, h = (h(1)

h(2)

)
, then W0,W

(i)
1 , W

(i)
2 , i = 1, 2 and W1 are defined as

follows:

� = W0({c1, f1}, . . . , {cN, fN }) = det A

W
(i)
1 ({c1, f1}, . . . , {cN, fN };h) = det

(
A b

α(i) h(i)

)
, i = 1, 2

W
(i)
2 ({c1, f1}, . . . , {cN, fN }; u) = det

(
A (α(i))T

α(i) u

)
, i = 1, 2,

W1({c1, f1}, . . . , {cN, fN };h) =
(

W
(1)
1 ({c1, f1}, . . . , {cN, fN };h)

W
(2)
1 ({c1, f1}, . . . , {cN, fN };h)

)
where

A = (δij ci + σ(fi, fj ))N×N, b = (σ (f1, h), . . . , σ (fN, h))T , α(i) = (
f

(i)
1 , . . . , f

(i)
N

)
σ(fi, fj ) := − W(fi, fj )

2(λi − λj )
, σ (fj , fj ) := 1

2
W(fj , ∂λj

fj ),

W(fi, fj ) = f
(1)
i f

(2)
j − f

(2)
i f

(1)
j .

The N-times repeated generalized binary Darboux transformation with an arbitrary
function of t for (2.1) is described by the following proposition [20].
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Proposition 2.1. Let fj be the solutions of (2.2) with λ = λn+j , and let cj (t) be an
arbitrary function of t ,j = 1, . . . , N , then the N-times repeated generalized binary Darboux
transformation for (2.1) is given by

ψ[N ] = 1

�
W1({c1, f1}, . . . , {cN, fN };ψ) (2.3a)

q[N ] = 1

�
W

(1)
2 ({c1, f1}, . . . , {cN, fN }; q) (2.3b)

r[N ] = 1

�
W

(2)
2 ({c1, f1}, . . . , {cN, fN }; r) (2.3c)

ϕj [N ] = 1

�
W1({c1, f1}, . . . , {cN, fN };ϕj ), j = 1, . . . , n (2.3d)

ϕn+m[N ] =
√

ċm(t)

cm(t)�
W1({c1, f1}, . . . , {cN, fN }; fm), m = 1, . . . , N, (2.3e)

namely the new variables ψ[N ], q[N ], r[N ], ϕ1[N ], . . . , ϕn+N [N ] satisfy system (2.2) with
n replaced by n + N , and (q[N ], r[N ], ϕ1[N ], . . . , ϕn+N [N ]) is a solution of (2.1) with n

replaced by n + N .

Obviously, the N-times repeated generalized binary Darboux transformation (2.3) provides
a non-auto-Bäcklund transformation between the two AKNSESCSs of degrees n and n + N .

3. Generalized binary Darboux transformations for the mKdV−ESCSs

The ordinary AKNS equation

qt = 6qqxr − qxxx, rt = 6qrrx − rxxx (3.1)

is reduced to the mKdV equations by setting r = ±q,

qt + 6εq2qx + qxxx = 0, ε = ±1. (3.2)

Equation (3.2) with ε = 1 (ε = −1) is denoted by the mKdV+equation (mKdV−equation).
Similarly, we can reduce the AKNSESCSs (2.1) to the mKdV−ESCSs, but the reductions

are more complicated since the sources need to be reduced consistently as well.
In order to obtain the mKdV−ESCSs from the reduction of the AKNSESCSs, we have to

consider the following AKNSESCSs:

qt = 6qqxr − qxxx +
n∑

j=1

[(
ϕ

(1)
j

)2
+

(
ω

(1)
j

)2]
, (3.3a)

rt = 6qrrx − rxxx +
n∑

j=1

[(
ϕ

(2)
j

)2
+

(
ω

(2)
j

)2]
(3.3b)

ϕj,x = U(λj , q, r)ϕj , j = 1, . . . , n (3.3c)

ωj,x = U(̃λj , q, r)ωj , j = 1, . . . , n, (3.3d)

where λj , λ̃j (j = 1, . . . , n) are 2n distinct complex constants, ϕj = (
ϕ

(1)
j , ϕ

(2)
j

)T
,

ωj = (
ω

(1)
j , ω

(2)
j

)T
. The corresponding Lax pair is
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ψx = U(λ, q, r)ψ, (3.4a)

ψt = V (λ, q, r)ψ +
n∑

j=1

[
H(ϕj )

λ − λj

+
H(ωj )

λ − λ̃j

]
ψ. (3.4b)

First, we define a linear map

S :

(
ϕ

(1)
j

ϕ
(2)
j

)
→

(
ϕ

(2)
j

ϕ
(1)
j

)
. (3.5)

In order to obtain the consistent reduction of source for r = q, we have to take λ̃j = −λj ,
ωj = Sϕj , j = 1, . . . , n, then equations (3.3) are reduced to the mKdV−ESCSs

qt = 6q2qx − qxxx +
n∑

j=1

[(
ϕ

(1)
j

)2
+

(
ϕ

(2)
j

)2]
ϕj,x = U(λj , q, q)ϕj , j = 1, . . . , n.

(3.6)

And system (3.4) is reduced to the Lax pair for the mKdV−ESCSs

ψx = U(λ, q, q)ψ

ψt = V (λ, q, q)ψ +
n∑

j=1

[
H(ϕj )

λ − λj

+
H(Sϕj )

λ + λj

]
ψ.

(3.7)

We now reduce the Darboux transformation for the AKNSESCSs to that for the mKdV−ESCSs.

Proposition 3.1. Let (q, ϕ1, . . . , ϕn) be a solution of equations (3.6), c(t) be an arbitrary
t-dependent function and f be a solution of (3.7) with λ = λn+1. The generalized binary
Darboux transformation with an arbitrary function of t for the mKdV−ESCSs is given by

� = W0({c, f }, {c, Sf }) (3.8a)

ψ = �−1W1({c, f }, {c, Sf };ψ) (3.8b)

q = q + �−1W
(1)
2 ({c, f }, {c, Sf }; 0) (3.8c)

ϕj = �−1W1({c, f }, {c, Sf };ϕj ), j = 1, . . . , n (3.8d)

ϕn+1 =
√

ċ(t)

c(t)�
W1({c, f }, {c, Sf }; f ), (3.8e)

namely ψ, q, ϕ1, . . . , ϕn+1 satisfy equation (3.7) with n replaced by n+1, and (q, ϕ1, . . . , ϕn+1)
is a solution of equation (3.6) with n replaced by n + 1.

The multi-times repeated generalized binary Darboux transformation with an arbitrary
function of t for the mKdV−ESCSs is given by the following proposition.

Proposition 3.2. Let (q, ϕ1, . . . , ϕn) be a solution of equations (3.6), cj (t) be an arbitrary
function of t and fj be a solution of (3.7) with λ = λn+j , j = 1, . . . , N . Then the multi-times
repeated generalized binary Darboux transformation with an arbitrary function of t for the
mKdV−ESCSs is given by

� = W0({c1, f1}, {c1, Sf1}, . . . , {cN, fN }, {cN, SfN }) (3.9a)

ψ[N ] = �−1W1({c1, f1}, {c1, Sf1}, . . . , {cN, fN }, {cN, SfN };ψ) (3.9b)
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q[N ] = q + �−1W
(1)
2 ({c1, f1}, {c1, Sf1}, . . . , {cN, fN }, {cN, SfN }; 0) (3.9c)

ϕj [N ] = �−1W1({c1, f1}, {c1, Sf1}, . . . , {cN, fN }, {cN, SfN };ϕj ), j = 1, . . . , n

(3.9d)

ϕn+m[N ] =
√

ċm(t)

cm(t)�
W1({c1, f1}, {c1, Sf1}, . . . , {cN, fN }, {cN, SfN }; fm),

m = 1, . . . , N, (3.9e)

namely ψ[N ], q[N ], ϕ1[N ], . . . , ϕn+N [N ] satisfy equation (3.7) with nreplaced by n + N , and
(q[N ], ϕ1[N ], . . . , ϕn+N [N ]) is a solution of equation (3.6) with n replaced by n + N .

4. Solutions of the mKdV−ESCSs

This section aims at applying the Darboux transformations (3.8) and (3.9) to obtain some new
solutions, such as singular soliton, positon and negaton solutions for the mKdV−ESCSs. At
the same time, the properties of these new solutions are analyzed in detail.

4.1. Singular soliton solutions

We now use proposition 3.1 to construct the singular one-soliton solution for the
mKdV−ESCSs.

We take a solution of equation (3.7) with q = 0, n = 0 and let λ1 ∈ R as follows:

f1 =
(

exp(−θ1)

0

)
, Sf1 =

(
0

exp(−θ1)

)
(4.1a)

c1(t) = −exp(−λ1α1t)

4λ1
, α1 � 0, (4.1b)

where θ1 = λ1
(
x − 4λ2

1t + x1
)
, x1 is an analytic function of λ1. (4.1c)

From (3.8c)–(3.8e) with q = 0, n = 0, we obtain singular one-soliton solution for the
mKdV−ESCSs with n = 1:

q = 2λ1

sinh(2θ1)
(4.2a)

ϕ
(1)
1 = −λ1

√
α1 exp(θ1)

sinh(2θ1)
, ϕ

(2)
1 = λ1

√
α1 exp(−θ1)

sinh(2θ1)
, (4.2b)

where θ1 = λ1
(
x − 4λ2

1t − α1
2 t + x1

)
.

Obviously, the singularity of the one-soliton solution (4.2) is determined by sinh(2θ1) = 0.
Similarly, in order to find a two-soliton solution, we take the solution of (3.7) with

q = 0, n = 0 as follows:

fj =
(

exp(−θj )

0

)
, Sfj =

(
0

exp(−θj )

)
, λj ∈ R, j = 1, 2,

θj = λj

(
x − 4λ2

j t + xj

)
, cj (t) = −exp(−λjαj t)

4λj

, αj � 0,
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then we have

� = c2
1c

2
2 − c2

2 exp(−4θ1)

16λ2
1

− c2
1 exp(−4θ2)

16λ2
2

+
(λ1 − λ2)

4 exp(−4θ1 − 4θ2)

256λ2
1λ

2
2(λ1 + λ2)4

− c1c2 exp(−2θ1 − 2θ2)

2(λ1 + λ2)2
(4.3a)

W
(1)
2 ({c1, f1}, {c1, Sf1}, {c2, f2}, {c2, Sf2}; 0) = c2

1c2 exp(−2θ2) − c1c
2
2 exp(−2θ1)

+
c2(λ1 − λ2)

2

16λ2
1(λ1 + λ2)2

exp(−4θ1 − 2θ2) +
c1(λ1 − λ2)

2

16λ2
2(λ1 + λ2)2

exp(−2θ1 − 4θ2) (4.3b)

W
(1)
1

({c1, f1}, {c1, Sf1}, {c2, f2}, {c2, Sf2}; f
(1)
i

) = c2
1c

2
2 exp(−θi)

+
c1c2(λi − λi+1) exp(−3θi − 2θi+1)

8λi(λ1 + λ2)2
+

c2
i (λi+1 − λi)

16λ2
i+1(λ1 + λ2)2

exp(−θi − 4θi+1)

(4.3c)

W
(2)
1

({c1, f1}, {c1, Sf1}, {c2, f2}, {c2, Sf2}; f
(i)
2

) = cic
2
i+1

4λi

exp(−3θi)

+
ci(λi − λi+1)

3 exp(−3θi − 4θi+1)

64λiλ
2
i+1(λ1 + λ2)3

+
c2
i ci+1 exp(−θi − 2θi+1)

2(λ1 + λ2)
(4.3d)

where i = 1, 2 and i + 1 = {2, i+1=2
1, i+1>2

.

Then (3.9c)–(3.9e) with q = 0, n = 0 and N = 2 give rise to the singular two-soliton
solution, q[2], ϕ1[2], ϕ2[2] for the mKdV−ESCSs (3.6) with n = 2.

In the domain where θ2 = λ2
(
x − 4λ2

2t + x2
)

is fixed and t → ±∞, the asymptotic
solution is

q[2] ∼ 2λ2

sinh(2θ2)
, ϕ2[2] ∼

− λ2
√

α2 exp(θ2)

sinh(2θ2)

λ2
√

α2 exp(−θ2)

sinh(2θ2)

 , ϕ1[2] ∼
(

0
0

)
,

t → −∞ (4.4a)

q[2] ∼ 2λ2

sinh 2
(
θ2 + 1

2ε0
) , ϕ2[2] ∼


− λ2

√
α2 exp

(
θ2+ 1

2 ε0

)
sinh 2

(
θ2+ 1

2 ε0

)
λ2

√
α2 exp

[
−
(
θ2+ 1

2 ε0

)]
sinh 2

(
θ2+ 1

2 ε0

)
 , ϕ1[2] ∼

(
0
0

)
,

t → ∞, (4.4b)

where ε0 = ln (λ1−λ2)
2

(λ1+λ2)2 , θ2 = λ2
(
x − 4λ2

2t − α2
2 t + x2

)
.

When θ1 is fixed and t → ±∞, we have a similar result for the asymptotic solution. These
estimates show that, in the indicated domain, the shape of the singular two-soliton emerging
out of the interaction is completely unchanged, except for the phase shift ± 1

k1,2
ln k1−k2

k1+k2
.

The singularN -soliton solution of equation (3.6) with n = N and real λj , j = 1, . . . , N,

is given by (3.9c)–(3.9e) with q = 0, n = 0 and

fj =
(

exp(−θj )

0

)
, Sfj =

(
0

exp(−θj )

)
, j = 1, . . . , N

cj (t) = −exp(−λjαj t)

4λj

, αj � 0, θj = λj

(
x − 4λ2

j t + xj

)
.
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4.2. Negaton solutions

Hereafter, we always take cj (t) = aj t + bj , where aj �= 0 and bj are real constants.

4.2.1. One-negaton solution. In contrast with (4.1), for obtaining the one-negaton solution
we take the solution of system (3.7) with q = 0, n = 0 and λ = λ1, Im λ1 = 0 as

f1 =
(

exp(−θ1)

exp θ1

)
, Sf1 =

(
exp(θ1)

exp(−θ1)

)
c1(t) = a1t + b1, a1 �= 0 and b1 are real constants

(4.5)

where θ1 is defined by (4.1c).
According to (3.8c)–(3.8e) with q = 0, n = 0 and N = 1, we obtain the one-negaton

solution for the mKdV−ESCSs (3.6) with n = 1:

q = 4λ1(2λ1r1 cosh 2θ1 − sinh 2θ1)

sinh2(2θ1) − 4λ2
1r

2
1

(4.6a)

ϕ
(1)
1 = 2

√
a1λ1(exp(θ1) sinh(2θ1) − 2λ1r1 exp(−θ1))

sinh2(2θ1) − 4λ2
1r

2
1

(4.6b)

ϕ
(2)
1 = 2

√
a1λ1(exp(−θ1) sinh(2θ1) − 2λ1r1 exp(θ1))

sinh2(2θ1) − 4λ2
1r

2
1

, (4.6c)

where r1 = x + (x1 + λ1∂λ1x1) − (
12λ2

1 − a1
)
t + b1.

As a function of x, q, ϕ
(1)
1 and ϕ

(2)
1 have two one-order poles which locate at the

points x = xp(t) determined by the equations sinh(2θ1) = 2λ1r1 and sinh(2θ1) = −2λ1r1,
respectively. The shape and the motion of q(x, t) is the same as that described in [31].

4.2.2. Two-negaton solution. The two-negaton solution of equation (3.6) with n = 2 and
real λj , j = 1, 2, is given by (3.9c)–(3.9e) by taking q = 0, n = 0, N = 2 and

fj =
(

exp(−θj )

exp θj

)
, θj = λj

(
x − 4λ2

j t + xj

)
, cj (t) = aj t + bj , j = 1, 2.

From (3.9c)–(3.9e) with q = 0, n = 0, N = 2, we easily obtain the asymptotic behavior of
the two-negaton solution for the mKdV−ESCSs (3.6) with n = 2.

In the domain where θ2 = λ2
(
x − 4λ2

2t + x2
)

is fixed and t → ±∞, the asymptotic
solution is

q[2] ∼ 4λ2[2λ2(r2 − r0) cosh 2(θ2 + θ0) − sinh 2(θ2 + θ0)]

sinh2 2(θ2 + θ0) − 4λ2
2(r2 − r0)2

ϕ2[2] ∼


2
√

a2λ2(exp(θ2 + θ0) sinh 2(θ2 + θ0) − 2λ2(r2 − r0) exp[−(θ2 + θ0)])

sinh2 2(θ2 + θ0) − 4λ2
2(r2 − r0)2

2
√

a2λ2(exp[−(θ2 + θ0)] sinh 2(θ2 + θ0) − 2λ2(r2 − r0) exp(θ2 + θ0))

sinh2 2(θ2 + θ0) − 4λ2
2(r2 − r0)2

 ,

ϕ1[2] ∼
(

0
0

)
t → −∞



Positon and negaton solutions of the mKdV equation with self-consistent sources 10513

q[2] ∼ 4λ2[2λ2(r2 + r0) cosh 2(θ2 − θ0) − sinh 2(θ2 − θ0)]

sinh2 2(θ2 − θ0) − 4λ2
2(r2 + r0)2

ϕ2[2] ∼


2
√

a2λ2(exp(θ2 − θ0) sinh 2(θ2 − θ0) − 2λ2(r2 + r0) exp[−(θ2 − θ0)])

sinh2 2(θ2 − θ0) − 4λ2
2(r2 + r0)2

2
√

a2λ2(exp[−(θ2 − θ0)] sinh 2(θ2 − θ0) − 2λ2(r2 + r0) exp(θ2 − θ0))

sinh2 2(θ2 − θ0) − 4λ2
2(r2 + r0)2

 ,

ϕ1[2] ∼
(

0
0

)
t → +∞,

where r0 = 2λ1

λ2
1−λ2

2
, θ0 = ln λ1−λ2

λ1+λ2
, r2 = x + (x2 + λ2∂λ2x2) − (

12λ2
2 − a2

)
t + b2.

When θ1 = λ1
(
x − 4λ2

1t + x1
)

is fixed and t → ±∞, we have a similar result for the
asymptotic solution. These estimates show that, in the indicated domain, the shape of the
two-negaton emerging out of the interaction is completely unchanged, except for phase shifts.
We can find two different phase shifts for negaton, one −2r0 in the linear function, another
one 2θ0 in the hyperbolic sine and exponent functions.

4.2.3. Multinegaton solutions. The N-negaton solution of the mKdV−ESCSs (3.6) with
n = N and real λj , j = 1, . . . , N , is given by (3.9c) and (3.9e) by taking q = 0, n = 0 and

fj =
(

exp(−θj )

exp θj

)
, θj = λj

(
x − 4λ2

j t + xj

)
, cj (t) = aj t + bj , j = 1, . . . , N.

4.3. Positon solutions

4.3.1. One-positon solution. Let f1 be a solution of equation (3.7) with q = 0, n = 0 and
λ = λ1 = ik1, k1 is real:

f1 =
(

exp(−iθ1)

exp(iθ1)

)
, Sf1 =

(
exp(iθ1)

exp(−iθ1)

)
, (4.7)

where θ1 = k1
(
x + 4k2

1 t + x1
)
, x1 is an analytic function of k1. Then the binary Darboux

transformation with an arbitrary function of t for the mKdV−ESCSs (3.6) gives

q = −4k1(sin 2θ1 − 2k1r1 cos 2θ1)

sin2(2θ1) − 4k2
1r

2
1

(4.8a)

ϕ
(1)
1 = 2

√
a1k1(2k1r1 exp(−iθ1) − exp(iθ1) sin(2θ1))

sin2(2θ1) − 4k2
1r

2
1

(4.8b)

ϕ
(2)
1 = 2

√
a1k1(2k1r1 exp(iθ1) − exp(−iθ1) sin(2θ1))

sin2(2θ1) − 4k2
1r

2
1

, (4.8c)

with r1 = x + x̃1 +
(
12k2

1 +a1
)
t +b1, x̃1 = x1 +k1∂k1x1, which gives the one-positon solution of

the mKdV−ESCSs with n = 1, λ1 = ik1, Im k1 = 0 corresponding to the one-positon solution
of the mKdV equation in [31, 32].

Based on the formulae (4.8), we can analyze the basic features of the one-positon solution
of equation (3.6) in the same way as in [31, 32]. We can conclude that for the one-positon
solution of (3.6) with n = 1, q(x, t) has the same shape, the same asymptotic behavior
when t → ±∞ as the one-positon solution of the mKdV equation, i.e. long-range analogs of
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solitons of the mKdV−ESCSs and slowly decreasing, oscillating solutions. We will show in
the following that the one-positon potential is superreflectionless, namely the corresponding
reflection coefficient is zero and the transmission coefficient is unity.

From proposition 3.1, we obtain

W
(1)
1 ({c1, f1}, {c1, S1f1};ψ) = exp(−iθ)r2

1 − exp(−iθ1)r1 sin(θ − θ1)

k − k1
− exp(−iθ) sin(2θ1)

4k2
1

+
exp(iθ1) sin(2θ1) sin(θ − θ1)

2k1(k − k1)
− exp(iθ1)r1 sin(θ + θ1)

k + k1

+
exp(−iθ1) sin(2θ1) sin(θ + θ1)

2k1(k + k1)

W
(2)
1 ({c1, f1}, {c1, S1f1};ψ) = exp(iθ)r2

1 − exp(iθ1)r1 sin(θ − θ1)

k − k1
− exp(iθ) sin(2θ1)

4k2
1

+
exp(−iθ1) sin(2θ1) sin(θ − θ1)

2k1(k − k1)
− exp(−iθ1)r1 sin(θ + θ1)

k + k1

+
exp(iθ1) sin(2θ1) sin(θ + θ1)

2k1(k + k1)

� = r2
1 − sin2(2θ1)

4k2
1

ψ
(1) = W

(1)
1 ({c1, f1}, {c1, S1f1};ψ)

�
∼ exp[−ik(x + 4k2t + x̃)], x → ±∞

ψ
(2) = W

(2)
1 ({c1, f1}, {c1, S1f1};ψ)

�
∼ exp[ik(x + 4k2t + x̃)], x → ±∞,

where θ = k(x + 4k2t + x̃), x̃ is an analytic function of k.
Therefore, we have

ψ =
(

ψ
(1)

ψ
(2)

)
∼

(
exp[−ik(x + 4k2t + x̃)]

exp[ik(x + 4k2t + x̃)]

)
, x → ±∞. (4.9)

Furthermore, the asymptotic behavior of another independent solution ψ̃ constructed by means
of ψ reads

ψ̃ =
(

ψ
(2)∗

−ψ
(1)∗

)
∼

(
exp[−ik(x + 4k2t + x̃)]

−exp[ik(x + 4k2t + x̃)]

)
, x → ±∞. (4.10)

We now define the Jost solution of the system (3.7) with λ = ik by imposing the asymptotic
behavior

E1 ∼
(

0
1

)
exp(ikx), E2 ∼

(
1
0

)
exp(−ikx), x → +∞ (4.11a)

F1 ∼
(

1
0

)
exp(−ikx), F2 ∼

(
0

−1

)
exp(ikx), x → −∞. (4.11b)

The reflection coefficients a(k), d(k) and the transmission coefficients b(k), c(k) are defined
by the formula

F1 = a(k)E1 + b(k)E2, F2 = c(k)E1 + d(k)E2. (4.12)
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In the one-positon potential case, we have

E1 = 1

2B
ψ − 1

2B
ψ̃, E2 = 1

2A
ψ +

1

2A
ψ̃, (4.13)

where A = exp[−ik(4k2t + x̃)], B = exp[ik(4k2t + x̃)].
Therefore, according to the asymptotic behavior of (4.9), (4.10) and (4.11), we find from

(4.12) and (4.13) that

a(k) = d(k) = 0, b(k) = 1, c(k) = −1. (4.14)

Reflectionless potentials are characterized by the vanishing reflection coefficients
a(k), d(k) while the transmission coefficients b(k), c(k) are not unity for these solutions.
Since b(k) = 1 and c(k) = −1 for a positon solution, the positon potentials are called the
superreflectionless or supertransparent one.

4.3.2. Two-positon solution. The two-positon solution of (3.6) with n = 2, λj = ikj ,
Im kj = 0, j = 1, 2, is given by (3.9c)–(3.9e) with q = 0, n = 0, N = 2 and

fj =
(

exp(−iθj )

exp(iθj )

)
θj = kj

(
x + 4k2

j t + xj

)
, cj (t) = aj t + bj , j = 1, 2

rj = x + x̃j +
(
12k2

j + aj

)
t + bj , x̃j = xj + kj ∂kj

xj .

We easily obtain the asymptotic behavior of the two-positon solution for fixed θ1 as t → ±∞
(which implies θ2 → ±∞)

q ∼ −4k1(sin 2θ1 − 2k1r1 cos 2θ1)

sin2(2θ1) − 4k2
1r

2
1

ϕ1[2] ∼


2
√

a1k1(2k1r1 exp(−iθ1) − exp(iθ1) sin(2θ1))

sin2(2θ1) − 4k2
1r

2
1

2
√

a1k1(2k1r1 exp(iθ1) − exp(−iθ1) sin(2θ1))

sin2(2θ1) − 4k2
1r

2
1

 ,

ϕ2[2] ∼
(

0
0

)
, t → ±∞.

When θ2 is fixed and t → ±∞ (θ1 → ±∞), we have a similar result for the asymptotic
behavior of the solution. Thus, we have shown that the two positons are totally insensitive to
the mutual collision, even without additional phase shifts, which is intrinsic for the collision
of two solitons.

4.3.3. Multipositon solutions. The N-positon solution of equation (3.6) with n = N and
λj = ikj , Im kj = 0, j = 1, . . . , N , is given by (3.9c) and (3.9e) with q = 0, n = 0 and

fj =
(

exp(−iθj )

exp(iθj )

)
θj = kj

(
x + 4k2

j t + xj

)
, cj (t) = aj t + bj , j = 1, . . . , N.

4.4. Multisoliton–positon, multisoliton–negaton and multipositon–negaton solutions

Like KdV equation, mKdV equation and KdVESCSs, the mKdV−ESCSs has multisoliton–
positon, multisoliton–negaton and multipositon–negaton solutions.
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(1) The N-positon–M-soliton solution of equation (3.6) with n = N + M and λj = ikj ,

Im kj = 0, j = 1, . . . , N , real λN+m,m = 1, . . . ,M are given by (3.9c)–(3.9e) with N

replaced by N + M , q = 0, n = 0 and

fj =
(

exp(−iθj )

exp(iθj )

)
, θj = kj

(
x + 4k2

j t + xj

)
,

cj (t) = aj t + bj , j = 1, . . . , N

fN+m =
(

exp(−θN+m)

0

)
, θN+m = λN+m

(
x − 4λ2

N+mt + xN+m

)
cN+m(t) = −exp(−λN+mαN+mt)

4λN+m

, αN+m � 0, m = 1, . . . ,M.

(2) The N-negaton–M-soliton solution of equation (3.6), with n = N + Mand real λj , j =
1, . . . , N + M , is given by equations (3.9c) and (3.9e) with N replaced by N + M , q = 0,
n = 0 and

fj =
(

exp(−θj )

exp θj

)
, θj = λj

(
x − 4λ2

j t + xj

)
,

cj (t) = aj t + bj , j = 1, . . . , N

fN+m =
(

exp(−θN+m)

0

)
, θN+m = λN+m

(
x − 4λ2

N+mt + xN+m

)
,

cN+m(t) = −exp(−λN+mαN+mt)

4λN+m

, αN+m � 0, m = 1, . . . ,M.

(3) The N-positon–M-negaton solution of equation (3.6), with n = N + M and λj = ikj ,

Im kj = 0, j = 1, . . . , N and real λN+m,m = 1, . . . ,M , is given by (3.9c)–(3.9e) with
N replaced by N + M , q = 0, n = 0 and

fj =
(

exp(−iθj )

exp(iθj )

)
, θj = kj

(
x + 4k2

j t + xj

)
, j = 1, . . . , N,

fN+m =
(

exp(−θN+m)

exp θN+m

)
, θN+m = λN+m

(
x − 4λ2

N+mt + xN+m

)
, m = 1, . . . ,M

cj (t) = aj t + bj , j = 1, . . . , N + M,

where aj �= 0 and bj are real constants.
We can analyze the interaction of the soliton and the positon, the soliton and the negaton,

the positon and the negaton in a similar way as in [31, 32]. We would like to point out that the
results of the analysis will be almost the same as in [31, 32], so we omit it.

5. Conclusion

In this paper, by reducing the generalized binary Darboux transformation with an arbitrary
function at time t for the AKNSECSs presented in [20], we obtain the generalized binary
Darboux transformation with arbitrary functions at time t for the mKdV−ESCSs which offers
a non-auto-Bäcklund transformation between two mKdV−ESCSs with different degrees of
sources and enables us to construct some general solutions with Narbitrary t-functions for
the mKdV−ESCSs. Some new solutions for the mKdV−ESCSs such as singular multisoliton,
multipositon, multinegaton, multisoliton–positon, multisoliton–negaton and multipositon–
negaton solutions are constructed by taking the special initial solution for auxiliary linear
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problems and the special functions of time t . In addition, the properties of these solutions are
analyzed in detail.

Acknowledgments

One of the authors (HXW) would like to express her gratitude to the referee for helpful
suggestions. This work is supported by the National Basic Research Program of China
(973 Program) (grant no. 2007CB814800) and the National Natural Science of China (grant
no 10601028).

References

[1] Leon J and Latifi A 1990 J. Phys. A: Math Gen. 23 1385
[2] Mel’nikov V K 1992 Inverse Problems 8 133
[3] Doktorov E V and Vlasov R A 1983 Opt. Acta 30 223
[4] Claude C, Latifi A and Leon J 1991 J. Math. Phys. 32 3321
[5] Mel’nikov V K 1989 Commun. Math. Phys. 126 201
[6] Mel’nikov V K 1990 Inverse Problems 6 233
[7] Kaup D J 1987 Phys. Rev. Lett. 59 2063
[8] Doktorov E V and Shchesnovich V S 1995 Phys. Lett. A 207 153
[9] Shchesnovich V S and Doktorov E V 1996 Phys. Lett. A 213 23

[10] Mel’nikov V K 1990 J. Math. Phys. 31 1106
[11] Leon J 1990 Phys. Lett. A 144 444
[12] Zeng Y B, Ma W X and Lin R 2000 J. Math. Phys. 41 5453
[13] Zeng Y B 1995 Acta Math. Sin. 15 337
[14] Zeng Y B and Li Y S 1993 J. Phys A: Math. Gen. 26 273
[15] Zeng Y B 1994 Physica D 73 171
[16] Zeng Y B and Li Y S 1996 Acta Math. Sin. New Ser. 12 217
[17] Zeng Y B, Ma W X and Shao Y J 2001 J. Math. Phys. 42 2113
[18] Zeng Y B, Shao Y J and Xue W M 2003 J. Phys. A: Math. Gen. 36 5035
[19] Xiao T and Zeng Y B 2004 J. Phys. A: Math.Gen. 37 7143
[20] Shao Y J and Zeng Y B 2005 J. Phys. A: Math. Gen. 38 2441
[21] Liu X J and Zeng Y B 2005 J. Phys. A: Math. Gen. 38 8951
[22] Zeng Y B, Shao Y J and Ma W X 2002 Commun. Theor. Phys. 38 641
[23] Zhang D J 2003 Chaos Solitons Fractals 18 31
[24] Zhang D J 2002 J. Phys. Soc. Japan 71 2649
[25] Zhang D J 2003 Physica A 321 467
[26] Hu X B 1996 Chaos Solitons Fractrals 7 211
[27] Hu X B and Wang H Y 2006 Inverse Problems 22 1903C1920
[28] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Springer: Berlin)
[29] Matveev V B 2002 Theor. Math. Phys. 131 483
[30] Ma W X 2004 Chaos Solitons Fractals 19 163
[31] Raisinariu C, Sukhutame U and Khare K 1996 J. Phys. A: Math. Gen. 29 1803
[32] Stahlhofen A 1992 Ann. Phys. 1 554
[33] Barran S, Kovlayov M and Khare A 1999 J. Phys. A: Math. Gen. 32 6121
[34] Beutler R 1993 J. Math. Phys. 34 3098
[35] Ma W X 2005 Chaos Solitons Fractals 26 1453
[36] Ma W X 2003 J. Phys. Soc. Japan 72 3017
[37] Ma W X and You Y C 2005 Trans. Am. Math. Soc. 357 1753
[38] Ma W X 2002 Phys. Lett. A 301 35
[39] Ma W X and Maruno K 2004 Physica A 343 219

http://dx.doi.org/10.1088/0305-4470/23/8/013
http://dx.doi.org/10.1088/0266-5611/8/1/009
http://dx.doi.org/10.1088/0266-5611/8/1/009
http://dx.doi.org/10.1063/1.529443
http://dx.doi.org/10.1007/BF02124337
http://dx.doi.org/10.1088/0266-5611/6/2/007
http://dx.doi.org/10.1103/PhysRevLett.59.2063
http://dx.doi.org/10.1016/0375-9601(95)00678-V
http://dx.doi.org/10.1016/0375-9601(96)00090-4
http://dx.doi.org/10.1063/1.528790
http://dx.doi.org/10.1016/0375-9601(90)90512-M
http://dx.doi.org/10.1063/1.533420
http://dx.doi.org/10.1063/1.533420
http://dx.doi.org/10.1088/0305-4470/26/5/018
http://dx.doi.org/10.1016/0167-2789(94)90155-4
http://dx.doi.org/10.1016/0167-2789(94)90155-4
http://dx.doi.org/10.1063/1.1357826
http://dx.doi.org/10.1088/0305-4470/36/18/308
http://dx.doi.org/10.1088/0305-4470/37/28/006
http://dx.doi.org/10.1088/0305-4470/38/11/008
http://dx.doi.org/10.1088/0305-4470/38/41/008
http://dx.doi.org/10.1088/0305-4470/38/41/008
http://dx.doi.org/10.1016/S0960-0779(02)00636-7
http://dx.doi.org/10.1143/JPSJ.71.2649
http://dx.doi.org/10.1016/S0378-4371(02)01742-9
http://dx.doi.org/10.1016/0960-0779(95)00054-2
http://dx.doi.org/10.1088/0266-5611/22/5/022
http://dx.doi.org/10.1023/A:1015149618529
http://dx.doi.org/10.1016/S0960-0779(03)00087-0
http://dx.doi.org/10.1088/0305-4470/29/8/027
http://dx.doi.org/10.1002/andp.19925040708
http://dx.doi.org/10.1088/0305-4470/32/34/301
http://dx.doi.org/10.1063/1.530065
http://dx.doi.org/10.1016/j.chaos.2005.03.030
http://dx.doi.org/10.1143/JPSJ.72.3017
http://dx.doi.org/10.1090/S0002-9947-04-03726-2
http://dx.doi.org/10.1016/S0375-9601(02)00971-4
http://dx.doi.org/10.1016/j.physa.2004.06.072

	1. Introduction
	2. Generalized binary Darboux transformation for the AKNSESCSs
	3. Generalized binary
	4. Solutions of the
	4.1. Singular soliton solutions
	4.2. Negaton solutions
	4.3. Positon solutions
	4.4. Multisoliton--positon, multisoliton--negaton and multipositon--negaton solutions

	5. Conclusion
	Acknowledgments
	References

